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Abstract. The paper deals with the theoretical analysis of progressive cross waves excited due to the horizontal
oscillations of a vertical, surface-piercing circular cylinder in water of constant depth. Although cross waves are a
phenomenon well known in laboratory wave tanks, it seems that they have not been observed around horizontally
oscillating structures in fluid up to now. Such observations have recently been carried out by the authors on
various models of offshore gravity platforms subjected to earthquake-like horizontal excitation in a water tank.
The theoretical analysis of the problem is based on a method developed by Becker and Miles (1992) for the
radial cross waves due to the motion of an axisymmetric cylindrical wavemaker. Whitham’s average-Lagrangian
approach is applied. It is shown that the energy transfer to the cross wave is described by the functional which is
quadratic, both in the forced basic wave and in the cross wave. Therefore, the solution to second-order problems
is necessary for the derivation of the evolution equations. The evolution of the cross wave is found to be described
by two complex nonlinear partial differential equations with coefficients depending on a slow radial variable both
in linear and nonlinear terms. The evolution equations are coupled through the nonlinear terms and through the
boundary conditions as well.
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1. Introduction

Cross waves are a phenomenon very well known in laboratory wave tanks. They have been
observed during experiments both with generic wavemakers and vertically oscillating, par-
tially immersed structures, as well as in horizontally or vertically vibrating water tanks (see
e.g.[1, 2]).

The first observation of cross waves can be traced to Faraday (see [3]), who carried out
experiments with a vibrating plate and a cork. One hundred years later, a similar discovery
was made by Schuler [4] during experiments with a vertically oscillating sphere, a plate and
with a wedge. The cross waves in a rectangular channel have been investigated experimentally
by Barnard and Pritchard [5] and more recently by Underhillet al. [6]. The quantitative
experimental study of the cross waves due to vertically oscillating, half-submerged spheres
has been carried out by Tatsunoet al. [7]. Taneda [8] observed during similar experiments
the transition from the outwardly propagating concentric waves to the radially decaying cross
waves.

Recently, stable cross waves have been observed by the authors during experiments with
various models of offshore gravity platforms subjected to earthquake-like horizontal excitation
in a water tank. This observation stimulated a whole series of large-scale experiments with
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228 M. Markiewicz and O. Mahrenholtz

different structure models (circular and rectangular cylinders, monotower-type and smooth
axisymmetric structures, multiple vertical cylinders) mounted on the shaker plate in the bot-
tom of the water tank and driven harmonically in the horizontal direction. The results of the
measurements will soon be published separately; here we mention only that, as soon as the ex-
citation amplitude reached some limiting value, stable progressive cross waves were induced
for any excitation frequency and, what is more important, for any type of the structure used.
To the authors’ knowledge, this is the first time that three-dimensional cross waves due to the
horizontal oscillation of free-surface piercing structures have been observed.

The spectral analysis of the measured pressure signals revealed the harmonic components
of 1

2ω, ω, 3
2ω and 2ω, ω being the excitation frequency. It is a fundamental feature of the phe-

nomenon confirmed in all earlier experimental works that, whereas the directly forced wave
(either plane or three-dimensional) has the same frequency as the wavemaker, the cross wave
has half that frequency. The problem can then be interpreted in the context of the parametric
resonance, in which energy is transferred from the forced wave to the cross wave through
nonlinear interactions. Thus, the parasitical, in the context of the laboratory wavemakers, cross
waves should now be viewed as the parametrically excited instability of a three-dimensional
radiation problem.

The generation of cross waves has not only been studied experimentally, but also theoret-
ically. The first theoretical analysis was given by Garrett [9] who studied the standing cross
waves in a short tank for a symmetrical (with respect to the vertical mid-plane of the chan-
nel) wavemaker. He linearized the boundary condition at the wavemaker and the boundary
conditions at the free surface and obtained, after spatial averaging, Mathieu’s equation for the
amplitude of the cross wave. Later, Mahony [10] and Jones [11] studied the same problem,
but on the assumption of progressive waves in a long channel. Mahony, similarly to Garrett,
linearized the boundary conditions at the wavemaker, whereas Jones carried out the nonlinear
analysis, using a perturbation method up to the third order of accuracy. Jones obtained the
evolution equations for the components of the complex, slowly varying in time and space
amplitude of the cross wave with the use of the resonance equations for third-order wave
components. These equations could then be combined to obtain a cubic Schrödinger equation
in a semi-infinite domain.

A completely different approach based on Whitham’s average-Lagrangian method was
proposed for the analysis of cross waves by Miles, and Becker and Miles in a series of
papers [12, 13, 14, 15]. Using the variational formulation, they were able to avoid many of
the complications of a perturbation method and could not only analyse the cross waves in a
rectangular channel, but also the radial cross waves due to an axisymmetric wavemaker. The
latter problem was thought to be an asymptotic approximation to Faraday’s experiment with a
vertically oscillating sphere.

Their last paper [15] is of particular importance for the problem considered in the present
work. They derive an evolution equation for a progressive radial cross wave excited by a
cylindrical wavemaker with the prescribed, radial displacement

r = r1+ χ(z, t), χ = a f(kz) sin 2ωt. (1)

Assuming that the amplitude of the cross wave varies slowly in time and in space, they obtain
an evolution equation that differs from the cubic Schrödinger equation only in the presence of
a factor 1/R in the nonlinear term, whereR is a slow radial variable. Then, they incorporate
weak, linear damping and obtain the transition conditions at which the forced concentric wave
loses stability to a parametrically forced cross wave.
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At first glance the problem considered in the present work looks very similar to that con-
sidered by Becker and Miles in [15]. However, there are some crucial differences which lead
to qualitatively new results.

Firstly, Becker and Miles consider a purely axisymmetric problem (with respect to the
directly forced wave), whereas only the wavemaker (circular cylinder) is axisymmetric in the
present work. In consequence, a much more complicated form of the cross wave, with two
slowly-varying amplitudes, is required.

Secondly, they carry out the analysis on the implicit assumption that the radial displace-
ment of the wavemaker vanishes asz→ −∞. This enables them to solve the problem, using
a deep-water approximation. Unfortunately, this is not the case in the present work, since the
excitation does not depend on thez-coordinate. Therefore, strictly speaking, the deep-water
approximation can only be used for the cross-wave solution which satisfies a homogeneous
boundary condition on the wavemaker.

Finally, in the work of Becker and Miles, the energy transfer to the cross-wave is described
by a functional which is linear in the forced wave and quadratic in the cross wave. Thus,
they need to retain terms of, at the most, second-order in their functional. Subsequently, only
the first-order waves are necessary for the derivation of the evolution equation. In contrast to
that, the exitation depends on the azimuthal coordinateϑ in the problem considered here and
energy is transfered through higher-order (quartic) interactions. The functional is quadratic
both in the forced wave and in the cross wave and comprises terms up to fourth order. Hence,
the solution to second-order problems is also necessary for the derivation of the evolution
equations.

In the following sections, a variational formulation of the problem is given. Then, the
trial solution and the governing equations for its components are developed. The required
solution to the first- and second-order problems follows in the next section. Further, the aver-
aged Lagrangian is calculated, and finally, the evolution equations, together with appropriate
boundary conditions for complex slowly-varying amplitudes of the cross wave, are derived
from Hamilton’s principle. Since the theoretical results will be compared in the future with
results of large-scale experiments, the effects of surface tension are neglected in the present
work.

2. Mathematical formulation

Consider a surface-piercing, circular cylinder founded on the bottom in water of constant
depthh. The origin of a fixed coordinate system is located at the undisturbed free surface and
the verticalz-axis is positive upward (see Figure 1).

The forced oscillations of the cylinder axis are described by the following displacement
function

u(t) = u0 sin 2ωt for t > 0 (2)

in the direction of thex-coordinate. Assuming thatu0 < r1, we can describe the instantaneous
cylinder surface (see Figure 2) in cylindrical coordinates(r, ϑ, z) as

r = f (ϑ, t) = u(t) cosϑ +
√
r2
1 − u2(t) sin2ϑ = r1+ ξ(ϑ, t). (3)
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Figure 1. Definition sketch.

Under the assumptions that the flow is irrotational and the fluid incompressible, there exists a
velocity potentialφ describing the waves radiated by the cylinder. The governing equations in
cylindrical coordinates forφ and the wave elevationη are

∇2φ = 0 (r1+ ξ < r <∞, 06 ϑ < 2π, −h < z < η), (4)

φ,z = η,t +∇φ · ∇η (z = η), (5)

φ,t + 1
2(∇φ)2+ gη = 0 (z = η), (6)

φ,r = ξ,t +∇φ · ∇f (r = f = r1 + ξ) (7)

φ,z = 0 (z = −h), (8)

together with an appropriate radiation condition and the requirement thatφ andη be periodic
in ϑ . Partial derivatives are denoted by( ), .

Figure 2. Description of the instantaneous cylinder surface.

This boundary value problem follows from Hamilton’s principle in the form

δ

∫ t2

t1

L̂dt = 0, (9)
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where the Lagrangian̂L has been derived by Luke [16]

L̂ = −
∫
V

[φ,t + 1
2(∇φ)2+ gz] dV, (10)

and the volume integral is over the domain bounded by the cylinder(r = r1 + ξ), the free
surface(z = η) and the bottom(z = −h).

An equivalent form of the Lagrangian, which is more convenient for the analysis of cross
waves, has been derived by Becker and Miles [14]. Following their derivation, we obtain

2L =
∫ 2π

0
dϑ
{∫ z0

−h

∫ ∞
r0

φ∇2φr dr dz+
∫ ∞
r0

[φ(2η,t − φ,z + ∇φ∇η)− gη2]z=ηr dr

+
∫ z0

−h
[φ(φ,r − ∇φ∇f − 2ξ,t )]r=f f (ϑ, t) dz

}
, (11)

wherer0(ϑ, t) andz0(ϑ, t) are the coordinates of the intersection of the instantaneous cylinder
surface with the free surface.

The boundary value problem (4–8) admits a directly forced wave solution with frequency
2ω which is stable for sufficiently smallu0, but asu0 is increased it may lose stability to a
radial cross wave. The cross wave is described by the same boundary-value problem with a
homogeneous boundary condition on the wetted cylinder surface.

3. Trial solution and governing equations

In the analysis which follows the variables are made dimensionless by the relations

(r̃, r̃1, z̃, h̃) = k (r, r1, z, h), θ = ωt (12)

with subsequent omitting of tildas, and a small parameterε = ku0 � 1 is defined withk
being the wavenumber of the cross wave. The problem will be solved under the assumption
that the nonlinearity can transfer energy from the forced wave to the cross wave if the exitation
frequency 2ω is approximately twice one of the natural frequenciesωk of the cross wave
according to

ω2− ω2
k = O(ε4ω2). (13)

The relation (13) determines the bandwidth of the hypothetical resonance which is narrower
than that considered in previous works [11, 13, 15]. This is due to the fact that energy transfer
to cross waves occurs through higher-order interactions. The bandwith (13) anticipates the
scaling of slow variables and the form of the averaged Lagrangian.

The crucial point of the analysis is the choice of a trial solution for the total potentialφ.
Taking into consideration the results of our experimental measurements, we pose the trial
functions in dimensionless form:

k2

ω
φ = ε(φ0+ φ1)+ ε2(φ00+ φ01+ φ11)+ ε3(φ000+ φ001+ φ011+ φ111)+ · · · , (14)

kη = ε(η0+ η1)+ ε2(η00+ η01+ η11)+ ε3(η000+ η001+ η011+ η111)+ · · · , (15)
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where:(φ0, η0) represents the linearized forced wave,(φ1, η1) describes the linear approxi-
mation to the cross wave,φjp, ηjp represent the interactions among first-order wave compo-
nents, andφjpq, ηjpq are third-order wave components. The presence of the third-order terms
in the expansions (14), (15) is due to the necessity of including of all fourth-order terms in the
functional (11).

For the purpose of further analysis it is also necessary to expand the function (3) describing
the instantaneous position of the wavemaker in a Taylor series about its rest position

kξ = εξ0+ ε2ξ00+O(ε3). (16)

The expansion components are

ξ0 = Re{i e−2iθ } cosϑ, ξ00= (Re{e−4iθ } − 1)(1− cos 2ϑ)/[8r1]. (17)

Inserting (14), (15) and (16) into the Equations (4)–(8), we obtain the governing equations for
the components ofφ andη.

The first-order boundary-value problems are described by

∇2φj = 0, (in fluid), (18)

φj,z − ηj,θ = 0, φj,θ + T −1ηj = 0, (z = 0), (19)

φj,r = δ0j ξ0,θ , (r = r1), (20)

φj,z = 0 (z = −h). (21)

The second-order approximation is given by

∇2φjp = 0, (in fluid), (22)

φjp,z − ηjp,θ =
(

1− δjp
2

)
(∇φj∇ηp +∇φp∇ηj − ηjφp,zz − ηpφj,zz),

φjp,θ + T −1ηjp =
(
δjp

2
− 1

)
(ηjφp,θz + ηpφj,θz +∇φj∇φp), (z = 0), (23)

φjp,r = ξjp,θ +∇ξj∇φp − ξjφp,rr, (r = r1), (24)

φjp,z = 0 (z = −h). (25)

The third-order boundary-value problems are described by

∇2φjpq = 0, (in fluid), (26)

φjpq,z − ηjpq,θ =
(

1− δ1j

2

)
(∇φjp∇ηq + ∇φq∇ηjp +∇φpq∇ηj

+∇φj∇ηpq − ηjpφq,zz − ηqφjp,zz − ηpqφj,zz − ηjφpq,zz)
−1

2η
2
pφ(j−p+q),zzz + (1− 2

3δ1j )(ηj∇φp,z∇ηq
+ηp∇φq,z∇ηj + ηq∇φj,z∇ηp), (z = 0), (27)
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φjpq,θ + T −1ηjpq =
(
δ1j

2
− 1

)
(∇φjp∇φq +∇φpq∇φj

+ηjpφq,θz + ηqφjp,θz + ηpqφj,θz + ηjφpq,θz)
−1

2η
2
pφ(j−p+q),θzz + (2

3δ1j − 1)(ηj∇φp,z∇φq
+ηp∇φq,z∇φj + ηq∇φj,z∇φp), (z = 0), (28)

φjpq,r = −ξjpφq,rr + ∇ξj∇φpq − ξjφpq,rr + ξj∇ξp∇φq
−1

2ξjξpφq,rrr , (r = r1), (29)

φjpq,z = 0 (z = −h). (30)

In the Equations (18)–(30) we havej, p, q = 0,1; δjp is the Kronecker delta andT denotes
tanhkh. Moreover,ξ1 ≡ ξ01 ≡ ξ11 ≡ 0. The Equations (18)–(30) have been derived on the
assumption (13) from which the following approximation follows

ω2
k

ω2
= kg tanhkh

ω2
= 1−O(ε4) ≈ 1. (31)

4. First-order problems

It has already been mentioned that the explicit solutions to all first-order problems considered
here are required in the subsequent analysis.

The linear approximation to the forced wave (j = 0) can be found through a Hankel
integral transform with respect to the radial coordinate. Proceeding similarly to Becker and
Miles [15], we anticipate a solution of the form

[φ0, η0] = Re
{[80(r, z), iZ0(r)]e−2iθ

}
cosϑ (32)

and define the following Hankel-transform pair

8̂0(z, µ) =
∫ ∞
r1

80(r, z)F1(µr,µr1)r dr, (33)

80(r, z) =
∫ ∞

0
8̂0(z, µ)F1(µr,µr1)µ dµ (34)

for the complex amplitude80(r, z) and similarly forZ0(r). The functionF1(µr,µr1) satisfies
the homogeneous boundary condition (20) on the wavemaker (cylinder) surfacer = r1 and
can be expressed in terms of Bessel and Hankel functions of the first order as follows

F1(µr,µr1) = J1(µr)Y
′
1(µr1)− Y1(µr)J

′
1(µr1)

[Y ′21 (µr1)+ J ′21 (µr1)]1/2

= H
(2)
1 (µr)H

(1)′
1 (µr1)−H(1)

1 (µr)H
(2)′
1 (µr1)

2i[H(1)′
1 (µr1)H

(2)′
1 (µr1)]1/2

, (35)
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where primes signify differentation with respect to the argument.
Inserting (32) into (18)–(21), carrying out the transformation according to (33), solving

the resulting differential equation with the proper boundary conditions for the transforms, and
carrying out the inverse transform (34), we obtain the first-order solution for the forced wave
in finite depthh

80 = 2

πi

∫ ∞
0

[
H
(1)
1 (µr)

H
(1)′
1 (µr1)

− H
(2)
1 (µr)

H
(2)′
1 (µr1)

](
1+ 4 coshµ(z+ h)

coshµh(µT − 4)

)
dµ

µ2
,

Z0 = 4

πi

∫ ∞
0

[
H
(1)
1 (µr)

H
(1)′
1 (µr1)

− H
(2)
1 (µr)

H
(2)′
1 (µr1)

](
T

µT − 4

)
dµ

µ
, (36)

whereT = tanhµh and the path of integration is deformed under the real poleµ0 (µ0T −4=
0) in order to satisfy the radiation condition atr = ∞. This solution comprises both radiated
waves (contribution fromH(1)

1 (µr)) and evanescent modes (contribution fromH(1)
1 (µr) and

H
(2)
1 (µr)).
Evaluating the integrals in (36), we obtain a well-known solution

80 = 4H(1)
1 (µ0r)

µ0H
(1)′
1 (µ0r1)

sinh 2µ0h

(2µ0h+ sinh 2µ0h)

coshµ0(z+ h)
coshµ0h

+
∞∑
`=1

4K1(κ`r)

κ`K
′
1(κ`r1)

sin 2κ`h

(2κ`h+ sin 2κ`h)

cosκ`(z+ h)
cosκ`h

, (37)

whereiκ` are the imaginary poles of the integrand in (36).
When water depth increases(h → ∞, T → 1), the radiated component of the solution

(37) reduces to

8
(r)
0 =

H
(1)
1 (4r)

H
(1)′
1 (4r1)

e4z, (38)

and the local components (evanescent modes) are given by

8
(e)
0 = lim

h→∞
κ`h→ (2`−1)π

2

∞∑
`=1

8K1(κ`r)

κ`K
′
1(κ`r1)

sinκ`h

(2κ`h+ sin 2κ`h)
cosκ`(z+ h)

= −8r2
1

r

∞∑
`=1

sin[(2l − 1)π/2]
(2`− 1)π

cos

(
(2l− 1)π

2h
(z+ h)

)
, (39)

which converges to zero on the free surface and to−2r2
1/r on the bottom.

Hence, evaluating the integrals over the free surface, we need only the radiated component
(38) of the solution for80 that isO(r−1/2). The calculation of integrals over the cylinder
surface seems to require both radiated and evanescent (O(r−1)) components, even for a deep-
water approximation which is relevant for the problem considered. However, further analysis
will reveal that a part of the cylinder-surface integral can be transformed into a free-surface
integral and the remaining part gives a null contribution. Therefore, the evanescent modes (39)
do not contribute to the functional (11) and can be neglected in subsequent analysis.
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Figure 3. Comparison ofn (stepped line) andr1 (dotted line) for a circular cylinder.

The linear approximation to the cross wave (j = 1) has to satisfy Equations (18) and (19),
together with the homogeneous boundary condition (20) on the cylinder. We use a deep-water
approximation and require, instead of (21), thatφ1 vanishes ifz→−∞.

Since the problem considered here is not axisymmetric, we choose the solution for the
cross wave in the general form

[φ1, η1] =
√

2Fn(r, r1)
[
Re{[−i ez, 1]Ac(R, τ)e−iθ } cosnϑ

+ Re{[−i ez, 1]As(R, τ)e−iθ } sinnϑ
]
, (40)

whereAc(R, τ) and As(R, τ) are dimensionless, slowly varying complex amplitudes;n is
an azimuthal wavenumber andR = 2ε2r andτ = ε4θ are slow variables (see [15], where
R = 2εr andτ = ε2θ). The amplitudesAc(R, τ) andAs(R, τ) are to be calculated from the
evolution equations.

The comprehensive discussion of the properties of radial cross waves is given in the paper
cited above; here we remark only that, since the energy is transferred from the wavemaker to
the cross wave through weak nonlinear interactions, the cross wave must be a standing wave
in the first (linear) approximation. Therefore,Fn(r, r1)must have the form (35), whereµ ≡ 1
and where Bessel and Hankel functions of order 1 have to be replaced by the same functions of
ordern. Moreover, the cross wave excitation is most efficient at that wavenumbern for which
the turning point of Bessel’s equation is at the cylinder. Thus, we may expectn be of order
O(r1) (r1 – dimensionless cylinder radius). This assumption has already been confirmed in
experiments of our own with different cylindrical wavemakers. For instance, the comparison
of the observed values ofn with r1 for a circular cylinder (radius – 9 cm) is given in Figure
3. It should also be noted that, in view of the parameter range considered (r1 ∈ (4,12)), the
Hankel functions in (38) and (40) can be replaced by their asymptotic approximations, even
near the cylinder surface.

5. Second-order problems

The solution to all second-order problems described by the Equations (22)–(25) can also be
found through Hankel transforms. The calculations are straightforward in principle (though
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tedious) and follow the same line for all involved second-order interactionsφjp. Our analy-
sis will show, however, that only(φ01, η01) and(φ11, η11) are explicitly required for the the
derivation of the evolution equations. These two components admit the use of the deep-water
approximation and we shall take advantage of this to simplify the results. Below we present
the solution procedure and some results in a compact form.

Inserting the solutions of the first-order problems into the Equations (22)–(25), we ob-
tain on their right-hand sides a combination of terms with various harmonic components
in the time domain (indexm) and in space (indexα). There appear terms proportional to
Ac, As, A2

c , A2
s and toAcAs. There are also terms which do not depend on the amplitudes.

Eventually, we obtain the following boundary-value problem for each harmonic component
m (m = 0,1,2,3,4) of the potential functionφjp

∇2φmjp = δ(r − r1)
∑
l∈S

Re

{
Am
l Q

ml(r1, ϑ, z)e−imθ
}

(in fluid),

φmjp,z − ηmjp,θ =
∑
l ∈ S

Re

{
Am
l G

ml(r, ϑ)e−imθ
}
,

φmjp,θ + ηmjp =
∑
l ∈ S

Re

{
Am
l H

ml(r, ϑ)e−imθ
}
,

 (z = 0), (41)

φmjp,r = 0 (r = r1), φmjp,z → 0 (z→−∞), (42)

whereδ(r − r1) is the Kronecker delta, and the following setsS andAm
l have been defined

for the second-order problems considered:

S = {s, c}, A1
l = A∗l , A3

l = Al for the case(01),

S = {s, c, sc}, A0
s = |As|2, A0

c = |Ac|2, A0
sc = AsA∗c + AcA∗s ,

A2
s = A2

s , A2
c = A2

c, A2
sc = 2AsAc for the case(11). (43)

Omitting here the details of the functionsQml, Gml andHml, we pose the solution for each
problem(jp) in the form

[φmjp, ηmjp] = (2)p/2
∑
l ∈ S

Re

{
Am
l [i8ml(r, ϑ, z), Zml(r, ϑ)]e−miθ} (44)

and define the following Hankel-transform pair[
8̂ml

Ẑml

]
α

=
∫ 2π

0

∫ ∞
r1

[
8ml

Zml

]
F l
α (µr, µr1)r dr dϑ, (45)

[
8ml

Zml

]
=
∑
α

2− δ0α

2π

∫ ∞
0

[
8̂ml

Ẑml

]
α

F l
α(µr, µr1)µ dµ, (46)

where the following identities hold for the different second-order waves:

– the case(01)

F s
α ≡ Fα(µr,µr1) sinαϑ, F c

α ≡ Fα(µr,µr1) cosαϑ

for α = (n− 1), (n+ 1),
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– the case(11)

F s
α ≡ Fα(µr,µr1) cos(δ(2n)απ − αϑ), F c

α ≡ Fα(µr,µr1) cosαϑ,

F sc
α ≡ Fα(µr,µr1) sinαϑ for α = 0, 2n,

andFα(µr,µr1) is given by Equation (35) modified for Bessel functions of orderα.
Inserting (44) into (41) and carrying out the integral transformation, we obtain the boundary-

value problems for the transforms of each space-harmonic componentα:

8̂ml
α,zz − µ28̂ml

α = Qml
α (r1, z)Fα(µr1, µr1)r1 (in fluid), (47)

8̂ml
α,z +mẐmlα = Ĝmlα

m 8̂ml
α + Ẑmlα = Ĥml

α

}
(z = 0), (48)

8̂ml
α,r = 0 (r = r1), 8̂ml

α,z→ 0 (z =→ −∞). (49)

The solution to this system of equations is

8̂ml
α =

Ĝmlα −m Ĥml
α

µ−m2
eµz − 1

2µ

∫ 0

−∞
f mlα (ν)

(
e−µ|z−ν| + µ+m

2

µ−m2
eµ(z+ν)

)
dν,

Ẑmlα =
m

µ−m2

(
µ

m
Ĥml
α − Ĝmlα +

∫ 0

−∞
f mlα (ν)eµν dν

)
, (50)

wheref mlα (ν) = Qml
α (r1, ν)Fα(µr1, µr1)r1.

The solution for each second-order wave(φjp, ηjp) can be obtained with the use of the
inverse integral transform (46). For instance, for a second-order cross wave we obtain:[

φ11

η11−〈η11〉

]
= Re

{
1
2 e−2iθ

∑
α=0,2n

∫ ∞
0

[
i(µ2− 4)eµz

2µ− µ2− 1
4µ

3

]
K(11)
α (µ)Fα(µr,µr1)

µ dµ

µ− 4

· [A2
s cos(δ(2n)απ − αϑ)+ A2

c cosαϑ + 2AsAc sinαϑ
]}
, (51)

whereK(11)
α (µ) = ∫∞

r1
F 2
n (r, r1)Fα(µr,µr1)r dr, and the temporal mean wave elevation is

〈η11〉 = 1
2{|As|2[(F s

n )
2− (∇F s

n )
2] + |Ac|2[(F c

n )
2− (∇F c

n )
2]

+(AsA∗c + AcA∗s )[F s
n F c

n −∇F s
n∇F c

n ]}. (52)

The path of integration in (51) passes under the pole atµ = 4 in order to satisfy the radi-
ation condition atr = ∞. The asymptotic approximation forr → ∞ is dominated by the
contribution of this pole and its complex amplitude is given by[

811

Z11

]
∼
[

12ie4z

−24

](
2π

r

)1/2

ei(4r+
3
4π)

∑
α=0,2n

Dα(4r1)K
(11)
α (4)

· [A2
s cos(δ(2n)απ − αϑ)+ A2

c cosαϑ + 2AsAc sinαϑ
]+O(r−1), (53)
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where

Dα(4r1) =
(
H(2)′
α (4r1)

H
(1)′
α (4r1)

)1/2

eiπα/2.

The results forφ01 andη01 are:

φ01 =
√

2Re
{
(A∗s8

1s + A∗c8
1c)i e−iθ + (As8

3s + Ac8
3c)i e−3iθ

}
, (54)

η01 =
√

2Re
{
(A∗sZ

1s + A∗cZ
1c)e−iθ + (AsZ

3s + AcZ
3c)e−3iθ

}
. (55)

The complex amplitudes81`, Z1`,83` andZ3` are given by[
81`

Z1`

]
=

∑
α=(n−1),(n+1)

i

8

∫ ∞
0

{[
(50− 2µ2)eµz

µ3+ µ2− 5µ− 45

]
K(01)
α (µ)

+
[

ez

−1

]
Mα(µ)

}
F `
α (µr,µr1)

µ dµ

µ− 1
, (56)

[
83`

Z3`

]
=

∑
α=(n−1),(n+1)

− i
8

∫ ∞
0

{[
3(50− 2µ2)eµz

µ3+ 9µ2 − 45µ− 45

]
K(01)
α (µ)(µ− 1)

+
[
(µ− 9)ez + 8 eµz

−3(µ− 1)

]
Mα(µ)

}
F `
α (µr,µr1)

µ dµ

(µ− 1)(µ− 9)
, (57)

where

M(n∓1) = 2r1
µ+ 1

(
Fn,rr ∓ n

r2
Fn

)
|r=r1

F(n∓1)(µr1, µr1),

K(01)
α =

∫ ∞
r1

H
(1)
1 (4r)

H
(1)′
1 (4r1)

Fn(r, r1)Fα(µr,µr1)r dr.

An asymptotic approximation to (56) and (57) satisfying the radiation condition atr = ∞ is[
8m`

Zm`

]
∼ i

8
(−1)

m+1
2

[
em

2z

−m

](
2πm2

r

)1/2

ei(m
2r+3π/4)

∑
α=(n−1),(n+1)

D`
α(m

2r1)
[
(2m4− 50)mK(01)

α (m2)−Mα(m
2)
]+ [ O(r−1)

O(r−3/2)

]
, (58)

where

D s
α(·) =

(
H(2)′
α (·)

H
(1)′
α (·)

)1/2

e−iπα/2 sinαϑ, Dc
α(·) =

(
H(2)′
α (·)

H
(1)′
α (·)

)1/2

e−iπα/2 cosαϑ.
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6. Average Lagrangian

The solutions obtained for the first- and second-order waves depend both on the fast and on
the slow variables:

φ0 = φ0(r, ϑ, z), φ1 = φ1(r, ϑ, z, R, τ),

φ00 = φ00(r, ϑ, z), φ01 = φ01(r, ϑ, z, R, τ), φ11 = φ11(r, ϑ, z, R, τ).

Similar relations are valid forηj andηjp.
In order to calculate the averaged Lagrangian, we insert the trial solutions (14) and (15)

into the functional (11), including all terms up to the orderO(ε4). Proceeding similarly to
Becker and Miles [15], we expand the integrands in the free-surface and wavemaker integrals
aboutz = 0 and r= r1, respectively, separate out the contribution of the end point in the
free-surface integral by the approximation∫ ∞

r0

[∼ ] dr ≈
∫ ∞
r1

[∼ ] dr − r0[∼ ]r=r1,

wherer0 ≈ ξ(ϑ,0, t), apply the same approximation to the wavemaker integral, and carry out
the differentiation (where necessary) according to the rule

∂

∂r
7→ ∂

∂r
+ 2ε2 ∂

∂R
,

∂2

∂r2
7→ ∂2

∂r2
+ 4ε2 ∂2

∂r∂R
+ 4ε4 ∂

2

∂R2
,

∂

∂θ
7→ ∂

∂θ
+ ε4 ∂

∂τ
.

Further, we separate out the LagrangianL0 of the forced wave which is indepenent ofAs and
Ac and does not contribute to Hamilton’s principle. Finally, we average〈 〉 the Lagrangian
over the fast timeθ to obtain the dimensionless average Lagrangian in the form

L = 2k5

ω2ε4
〈L− L0〉 = L11+L0011+L1111+O(ε2). (59)

The components of the averaged Lagrangian are:

L11 = 2
∫ 2π

0

∫ 0

−h

∫ ∞
r1

〈
φ1(φ1,R + 2rφ1,rR + 2ε2rφ1,RR)

〉
dr dz dϑ

+2
∫ 2π

0

∫ 0

−h

〈
φ1φ1,Rr

〉
r=r1 dz dϑ

+
∫ 2π

0

∫ ∞
R1

〈
φ1η1,τ + 1

2ε4

(
φ1η1,θ − kg

ω2
η2

1

)〉
z=0

r dR dϑ, (60)

L0011 =
∫ 2π

0

∫ ∞
r1

〈 − η1(φ001,θ + η001)− η0(φ011,θ + η011)+ 1
2η11(∇φ0)

2

+η01∇φ0∇φ1 + 1
2η00(∇φ1)

2+ φ11,zη0η0,θ + φ01,z(η0η1),θ

+φ00,zη1η1,θ + 1
2(φ0,zzη

2
1η0,θ + φ1,zzη

2
0η1,θ )〉z=0 r dr dϑ
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−
∫ 2π

0

∫ 0

−h
〈(φ011ξ0,θ + φ11ξ00,θ )r1 + φ11ξ0ξ0,θ〉r=r1 dz dϑ

−
∫ 2π

0

〈
η1φ1ξ0ξ0,θ + r1

2
ξ0,θη

2
1φ0,z + 2r1ξ

2
0φ1,rη1,θ

+ r1ξ0
[
(φ11,θ + η11)(φ0 − η0)− η1(φ01,θ + η01)+ φ0,zη1η1,θ

+φ1,z(η0η1),θ
]〉
r=r1
z=0

dϑ, (61)

L1111 =
∫ 2π

0

∫ ∞
r1

〈 − η1(φ111,θ + η111)− η11(φ11,θ + η11)+ φ1,z(η1η11),θ

+φ11,zη1η1,θ + 1
2φ1,zzη

2
1η1,θ 〉z=0 r dr dϑ. (62)

It should be noticed that in (61) and (62) the terms in parentheses are just the left-hand sides of
the boundary conditions (23) and (28) for a deep-water approximation. Moreover, the integral
of 〈φ011ξ0,θ〉 (the term of (61)) can be transformed with the use of Green’s theorem and the
boundary condition (29) according to

−
∫ 2π

0

∫ 0

−h

〈
φ011ξ0,θ

〉
r=r1 r dz dϑ =

∫ 2π

0

∫ ∞
r1

〈
φ0φ011,z − φ011φ0,z

〉
z=0 r dr dϑ, (63)

The relation (63) can further be combined with the term−η0(φ011,θ + η011) of the functional
(61) leading to〈

φ0φ011,z − φ011φ0,z
〉+ 〈−η0(φ011,θ + η011)

〉 = 〈φ0(φ011,z − η011,θ )
〉
,

where again the term in parentheses is identical with the left-hand side of the free-surface
boundary condition. Therefore, all third-order wave components in (61) and (62) can be
replaced by lower-order components, and the explicit solution to the third-order problems
is not needed for the derivation of the evolution equations.

The functional (60) can be reduced to the form obtained by Becker and Miles [15]. Using
the identities

φ1φ1,rR = φ1,rφ1,R, 〈η2
1〉 = −〈η1φ1,θ 〉,

d

dr
(rφ1φ1,R) = ∂

∂r
(rφ1φ1,R)+ 2ε2 ∂

∂R
(rφ1φ1,R),

and integrating by parts, we obtain

L11 =
〈
−2

∫ 2π

0

∫ 0

−h

∫ ∞
R1

φ2
1,Rr dR dz dϑ +

∫ 2π

0

∫ ∞
R1

(φ1η1,τ + βφ1η1,θ )z=0r dR dϑ

〉
, (64)

whereR1 = 2ε2r1, andβ = (ω2 − ω2
k)/(2ε

4ω2). Clearly,β is of orderO(1) due to the
resonance condition (13).
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Inserting the solution for the first-order cross wave into (64), and averaging over the fast
time θ , we have

L11 = Re

{∫ ∞
R1

{i(A∗cAc,τ + A∗sAs,τ )+ β(AcA∗c + AsA∗s )

− (Ac,RA∗c,R + As,RA∗s,R)}πF 2
n (r)r dR

}
, (65)

where the asterisk denotes a complex conjugate. Proceeding similarly to Becker and Miles
[15], we use the asymptotic approximation toπF 2

n (r)r,

πF 2
n (r)r ∼ 1+ cos

[
R

ε2
− (n+ 1

2)π + 2 tan−1

(
J
′
n(r1)

Y
′
n(r1)

)]
, (66)

neglect the integrals with fast oscillating integrands, and approximate (65) by

L11 = Re

{∫ ∞
R1

{i(A∗cAc,τ + A∗sAs,τ )+ β(AcA∗c + AsA∗s )

− (Ac,RA∗c,R + As,RA∗s,R)} dR
}
. (67)

A similar procedure can be applied to the functionals (61) and (62). The oscillatory compo-
nents of the integrands forR = O(1) are neglected and the approximationA = A(R1, τ ) =
A1 for r = O(r1) is invoked. The result forL0011 is

L0011=
∫ ∞
R1

{γcAcA∗c + γsAsA∗s }R−1 dR + PcA1cA∗1c+ PsA1sA∗1s. (68)

The coefficientsγc, γs for the deep-water approximation are

γc = 175

8π|H(1)′
1 (4r1)|2

≈ 175

4
r1, γs = 81

8π|H(1)′
1 (4r1)|2

≈ 81

4
r1. (69)

The expressions forPc andPs are given in Appendix A.
The result of the approximation procedure forL1111 is

L1111= −1
2δ

∫ ∞
R1

(3a + b)R−1 dR + 1
2Q1a1+ 1

2Q2b1 −Q3A1cA∗1cA1sA∗1s, (70)

where

a = (AcA∗c + AsA∗s )
2, b = (AcA∗s − AsA∗c)

2,

a1 = a(R1), b1 = b(R1), δ = 3

8π
.

The expressions forQ1, Q2 andQ3 are given in Appendix B. The detailed analysis shows
(see Appendix B) thatQ3 is a quantity of higher order in comparison toQ1 andQ2 and can
be neglected(Q3 = 0).
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Combining (65), (68) and (70), we arrive at the final form of the averaged Lagrangian

L =
∫ ∞
R1

{
i

2
(A∗cAc,τ − AcA∗c,τ )+

i

2
(A∗sAs,τ − AsA∗s,τ )+ β(AcA∗c + AsA∗s )

+(γcAcA∗c + γsAsA∗s )R
−1− (Ac,RA∗c,R + As,RA∗s,R)

− 1
2δR

−1[3(AcA∗c + AsA∗s )2+ (AcA∗s − AsA∗c)2]
}

dR

+PcA1cA∗1c + PsA1sA∗1s +
Q1

2
(A1cA∗1c + A1sA∗1s)

2

+Q2

2
(A1cA∗1s − A1sA∗1c)

2+O(ε2). (71)

7. Evolution equations

The evolution equations for the parametrically excited cross wave can be derived from Hamil-
ton’s principle (9). Inserting (71) into (9), requiring the resulting functional to be stationary
with respect to independent variations ofA∗c and A∗s , and invoking the null conditions at
infinity (Ac = 0 , As = 0 forR→∞), we obtain a set of two complex evolution equations

As,RR + iAs,τ + (β + γsR−1)As − δR−1
(
2|Ac|2As + (3A2

s + A2
c)A
∗
s

) = 0, (72)

Ac,RR + iAc,τ + (β + γcR−1)Ac − δR−1 (2|As|2Ac + (3A2
c + A2

s )A
∗
c

) = 0, (73)

together with the boundary conditions atR = R1

As,R + PsAs +Q1
(|Ac|2+ |As|2

)
As +Q2(AcA∗s − AsA∗c)Ac = 0, (74)

Ac,R + PcAc +Q1
(|Ac|2+ |As|2

)
Ac −Q2(AcA∗s − AsA∗c)As = 0. (75)

These equations have been derived on the assumption of a perfect fluid. Viscous dissipation
may be incorporated through the transformation (see [12])

A,τ 7→ A,τ + αA, α = ζ/ε4,

whereζ is the damping ratio (on the scaleθ) for the cross wave.
With this transformation, the evolution equations change into

As,RR + iAs,τ +
(
β + iα + γs

R

)
As − δ

R

(
2|Ac|2As + (3A2

s + A2
c)A
∗
s

) = 0, (76)

Ac,RR + iAc,τ +
(
β + iα + γc

R

)
Ac − δ

R

(
2|As |2Ac + (3A2

c + A2
s )A
∗
c

) = 0, (77)

without any change in the boundary conditions.
It is apparent that both the equations and the boundary conditions are coupled only through

nonlinear terms. It is also obvious that they are satisfied byAs = Ac = 0 which corresponds
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to a wave directly forced by the wavemaker. In order to determine the stability of this wave it
is necessary to analyse the linearized boundary-value problem

As,RR + iAs,τ + (β + iα + γsR−1)As = 0, (78)

Ac,RR + iAc,τ + (β + iα + γcR−1)Ac = 0 (79)

with the boundary conditions

As,R + PsAs = 0, (R = R1), As → 0, (R→∞), (80)

Ac,R + PcAc = 0, (R = R1), Ac→ 0, (R→∞). (81)

This boundary-value problem has some important features from which the qualitative be-
haviour of its possible solutions may be deduced. Firstly, the linear equations are uncoupled
and can be analyzed separately. Secondly, in contrast to previous results (see [15]), there are
two parametersγ andP (both are real numbers) describing the energy transfer from the
wavemaker and the forced wave to the cross wave. The parameterγ plays an important role,
since a simple analysis reveals that the trivial solutionAs = Ac = 0 is unconditionally stable
whenγ = 0. One should also notice that the flutter-type instability (not only divergence as in
[15]) of the trivial solution is generally expected.

Finally, we may anticipate that, for a prescribed excitation frequency, the form of the
cross wave emerging after the stability margin has been reached may be either symmetric
or antisymmetric (with respect to the vertical plane of excitation), depending on the values of
the parametersγc, γs, Pc andPs . The results presented in Appendix A suggest, that due to
the relationshipPs > Pc, more energy is transferred to an antisymmetric cross wave than to a
symmetric one.

It seems that the analysis of the evolution equations is possible by an approximate analyti-
cal WKB method (seee.g.[17] p. 558). Such an analysis is currently under development and
the results will be presented in a forthcoming paper.

8. Concluding remarks

In contrast to previous research results, the evolution of the cross wave excited by the hor-
izontally oscillating vertical cylinder in water of constant depth is found to be described by
two complex, nonlinear partial differential equations with coefficients which depend on a
slow radial variable, both in the linear and in the nonlinear terms. These equations differ
from the cubic Schrödinger equation which governs progressive cross waves in a rectangular
channel (see [13]) and differ from the evolution equations derived in [15] for an axisymmetric
wavemaker. The dependence of the linear part on the slow radial variable is a very important
feature playing a crucial role in the stability analysis of the forced wave. If the coefficients
of the linearized evolution equations were independent of the radial variable, the forced wave
would be stable (under the presence of viscous dissipation) and the excitation of the cross
wave would be impossible (at least for small perturbations).

It has been shown that, due to the specific geometry of the excitation, energy transfer
from the wavemaker to the cross wave occurs through higher-order (quartic) interactions. It
determines the scaling of the slow variables, which is different in comparison to previous
studies. The evolution process is slower and the radial variable is stretched out.
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The functional desribing the energy transfer is quadratic both in the forced wave and in
the cross wave and comprises the integrals over the free surface, the wavemaker and over
the wavemaker-water line. Therefore, the solution to the second-order problems is necessary
for the derivation of the evolution equations. The required solutions for second-order wave
components have been determined in the present work through integral transforms.

The derivation of the evolution equations is based on the assumptions that the amplitudes of
the forced wave and the cross wave are of the same order. Moreover, two harmonic azimuthal
wave components have been included in the trial solution for a linear approximation to a cross
wave. These assumptions are in accordance with the results of our experimental studies on
various models of offshore structures.

Appendix

A. Calculation of Ps and Pc

The detailed analysis shows thatPs andPc result from the contributions of the integral over
the undisturbed free surface (PF ) and of the line integral over the intersection of the cylinder
with the free surface (P I )

Ps = PFs + P Is , Pc = PFc + P Ic . (82)

The contribution of the integral over the cylinder surface is equal to zero.
The componentsPFs andPFc are equal and given by

PFs = PFc =
π

4
Re

i
∫ ∞
r1

∑
m=1,3

∑
α=(n−1),
(n+1)

[
8∗0Fn

([
8(−1)

m+1
2 + 5+ αn

r2

]
Zmα

+ αn

r2
8m
α + 2(m− 1)8m

α,z +8m
α,zz

)
+8∗0,rFn(8m

α,r + 48m
α,z)

+ 8∗0Fn,r (8
m
α,r + Zmα,r)+8∗0,rFn,rZmα +O(r−5/2)

]
|z=0

r dr

 . (83)

We may calculate the functions8m
α andZmα from (56) and (57) by taking the contribution of

the poleµ = m2 and the neighbourhood ofµ = 0, and applying an asymptotic approximation
to the Hankel functions for larger andr1[
8m
α

Zmα

]
∼ −1

8

[
(−1)

m+1
2 em

2z

−m

](
2πm2

r

)1/2

ei[m
2(r−r1)]

· [(2m4− 50)mK(01)
α (m2)−Mα(m

2)
]

(84)

+ i(−1)
m+1

2

16mr

 50

−45

m

(2r1
π

)1/2 [
ei[5(r−r1)−n

π
2 ] − ei[3(r−r1)+n

π
2 ]
]
+O(r−3/2).
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The componentsP Is andP Ic are given by

P Is =
π

16
F 2
n (r1)r1

[
6Re{80}

(
n2

r2
1

− 5
)
− Im{80}

(
3n2

r2
1

− 1
)]
|z=0, r=r1

,

P Ic =
π

16
F 2
n (r1)r1

[
2Re{80}

(
n2

r2
1

− 5

)
− Im{80}

(
n2

r2
1

− 3

)]
|z=0, r=r1

. (85)

The use of an asymptotic approximation to80 for large r and r1 leads eventually to very
simple expressions

P Is =
π

16
F 2
n (r1)r1

(
3n2

r2
1

− 1
)
, P Ic =

π

16
F 2
n (r1)r1

(
n2

r2
1

− 3
)

(86)

from which follows thatP Is > P Ic for any n and r1. This relationship implies immediately
Ps > Pc and we may deduce that it is generally easier to excite an antisymmetric (with
respect to the vertical plane of excitation) cross wave than a symmetric one.

The integrand inK(01)
α (m2) comprises a triple product of Hankel functions (O(r−1/2))

that is highly oscillatory (inr). Its improper integral can be calculated, either via Fresnel
integrals after an asymptotic approximation to the integrand has been applied, or directly in
the semi-analytical way proposed by Kim and Yue [18] or by Chau and Eatock Taylor [19].

B. Evaluation of Q1, Q2 and Q3

Q1 = π

8
Re

{∫ ∞
r1

{F 2
n (r)(4I0,z + 2I2n,z + 2N0 +N2n)− F 2

n,r (r)(2N0 +N2n)

−2Fn(r)Fn,r (r)(2I0,r + I2n,r )− n
2

r2
F 2
n (r)(4I2n + 2N0− N2n)

+ n2

r2
F 2
n (r)[10F2

n (r)− 2F 2
n,r (r)− 3

n2

r2
F 2
n (r)]}r dr

}
,

Q2 = π

8
Re

{∫ ∞
r1

{
F 2
n (r)(4I0,z − 2I2n,z + 2N0 −N2n)− F 2

n,r (r)(2N0 −N2n)

−2Fn(r)Fn,r (r)(2I0,r − I2n,r )+ n
2

r2
F 2
n (r)(4I2n − 2N0− N2n)

− n2

r2
F 2
n (r)

[
10F2

n (r)− 2F 2
n,r (r)+

n2

r2
F 2
n (r)

]}
r dr

}
,

Q3 = π

∫ ∞
r1

n2

r4
F 4
n (r)r dr,

where

Iα = lim
z→0−

∫ ∞
0

eµz(µ2− 4)K(11)
α (µ)Fα(µr)

µ dµ

µ− 4
, (87)
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Iα,z = lim
z→0−

∫ ∞
0

eµz(µ2− 4)K(11)
α (µ)Fα(µr)

µ2 dµ

µ− 4
, (88)

Iα,r = lim
z→0−

∫ ∞
0

eµz(µ2− 4)K(11)
α (µ)Fα,r (µr)

µ dµ

µ− 4
, (89)

Nα = lim
z→0−

∫ ∞
0

eµz(2µ− µ2 − 1
4µ

3)K(11)
α (µ)Fα(µr)

µ dµ

µ− 4
, (90)

for α = 0, 2n.
The integrals (87)–(90) result from the second-order cross wave and can be replaced by

their asymptotic approximation for larger and r1. This approximation is dominated by the
contribution of the pole (µ = 4) and is given by

Ĩα ∼ 24i
(

2π

r

)1/2

e4i(r−r1)K(11)
α (4)+O(r−1),

Ĩα,z ∼ 96i

(
2π

r

)1/2

e4i(r−r1)K(11)
α (4)+O(r−3/2),

Ĩα,r ∼ 96i

(
2π

r

)1/2

e4i(r−r1)K(11)
α (4)+O(r−3/2),

Ñα ∼ −48i
(

2π

r

)1/2

e4i(r−r1)K(11)
α (4)+O(r−3/2).

Consequently, the coefficientsQ1,Q2 andQ3 can be simplified to single integrals

Q1 = π

8
Re

{∫ ∞
r1

{F̃ 2
n (r)(4Ĩ0,z + 2Ĩ2n,z + 2Ñ0 + Ñ2n)− 2F̃n(r)F̃n,r (r)(2Ĩ0,r + Ĩ2n,r)

− F̃ 2
n,r (r)(2Ñ0 + Ñ2n)+O(r−5/2)}r dr

}
, (91)

Q2 = π

8
Re

{∫ ∞
r1

{F̃ 2
n (r)(4Ĩ0,z − 2Ĩ2n,z + 2Ñ0 − Ñ2n)− 2F̃n(r)F̃n,r (r)(2Ĩ0,r − Ĩ2n,r)

− F̃ 2
n,r (r)(2Ñ0 − Ñ2n)+O(r−5/2)}r dr

}
, (92)

Q3 = π

∫ ∞
r1

{O(r−5)} dr ≈ 0. (93)

Here,F̃n andF̃n,r denote asymptotic approximations toFn andFn,r , respectively.
The integrals in (91)–(93) as well as inK(11)

α have highly oscillatory (inr) integrands that
areO(r−1/2). They can again be calculated with sufficient accuracy in the semi-analytical way
presented in the papers mentioned in Appendix A.

163303.tex; 19/05/1998; 8:23; p.20



Progressive cross waves247

Acknowledgement

This work was supported by Deutsche Forschungsgemeinschaft (grant Ma 358/72-1).

References

1. M. Funakoshi and S. Inoue, Surface waves due to resonant horizontal oscillation.J. Fluid Mech.192 (1988)
219–247.

2. J. Miles and D. Henderson, Parametrically forced surface waves.Annu. Rev. Fluid Mech.22 (1990) 143–165.
3. M. Faraday, Entry inFaraday’s Diary, T. Martin (ed.). London: G. Bell, 1 (1932) 350–357.
4. M. Schuler, Der Umschlag von Oberflächenwellen.ZAMM13 (1933) 443–446.
5. B. J. S. Barnard and W. G. Pritchard, Cross-waves. Part 2. Experiments.J. Fluid Mech.55 (1972) 245–255.
6. W. B. Underhill, S. Lichter and A. J. Bernhoff, Modulated, frequency-locked, and chaotic cross-waves.J.

Fluid Mech.225 (1991) 371–394.
7. M. Tatsuno, S. Inoue and J. Okabe, Transfiguration of surface waves.Rep. Res. Inst. Appl. Mech. Kyushu

Univ. 17 (1969) 195–215.
8. S. Taneda, Visual observations of the flow around a half-submerged oscillating sphere.J. Fluid Mech.227

(1991) 192–209.
9. C. J. R. Garrett, On cross-waves.J. Fluid Mech.41 (1970) 837–849.

10. J. J. Mahony, Cross-waves. Part 1. Theory.J. Fluid Mech.55 (1972) 229–244.
11. A. F. Jones, The generation of cross-waves in a long deep channel by parametric resonance.J. Fluid Mech.

138 (1984) 53–74.
12. J. Miles, Parametrically excited, standing cross-waves.J. Fluid Mech.186 (1988) 119–127.
13. J. Miles and J. Becker, Parametrically excited, progressive cross-waves.J. Fluid Mech.186 (1988) 129–146.
14. J. Becker and J. Miles, Standing radial cross-waves.J. Fluid Mech.222 (1991) 471–499.
15. J. Becker and J. Miles, Progressive radial cross-waves.J. Fluid Mech.245 (1992) 29–46.
16. J. C. Luke, A variational principle for a fluid with a free surface.J. Fluid Mech.27 (1967) 395–397.
17. D. Zwillinger,Handbook of Differential Equations. San Diego: Academic Press, Inc. (1992) 787 pp.
18. M. H. Kim and D. K. P. Yue, The complete second-order diffraction solution for an axisymmetric body.

Part1. Monochromatic incident waves.J. Fluid Mech.200 (1989) 235–264.
19. F. P. Chau and R. Eatock Taylor, Second-order wave diffraction by a vertical cylinder.J. Fluid Mech.240

(1992) 571–599.

163303.tex; 19/05/1998; 8:23; p.21


