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Abstract. The paper deals with the theoretical analysis of progressive cross waves excited due to the horizontal
oscillations of a vertical, surface-piercing circular cylinder in water of constant depth. Although cross waves are a
phenomenon well known in laboratory wave tanks, it seems that they have not been observed around horizontally
oscillating structures in fluid up to now. Such observations have recently been carried out by the authors on
various models of offshore gravity platforms subjected to earthquake-like horizontal excitation in a water tank.
The theoretical analysis of the problem is based on a method developed by Becker and Miles (1992) for the
radial cross waves due to the motion of an axisymmetric cylindrical wavemaker. Whitham’s average-Lagrangian
approach is applied. It is shown that the energy transfer to the cross wave is described by the functional which is
quadratic, both in the forced basic wave and in the cross wave. Therefore, the solution to second-order problems
is necessary for the derivation of the evolution equations. The evolution of the cross wave is found to be described
by two complex nonlinear partial differential equations with coefficients depending on a slow radial variable both
in linear and nonlinear terms. The evolution equations are coupled through the nonlinear terms and through the
boundary conditions as well.
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1. Introduction

Cross waves are a phenomenon very well known in laboratory wave tanks. They have been
observed during experiments both with generic wavemakers and vertically oscillating, par-
tially immersed structures, as well as in horizontally or vertically vibrating water tanks (see
e.g.[1, 2)).

The first observation of cross waves can be traced to Faraday (see [3]), who carried out
experiments with a vibrating plate and a cork. One hundred years later, a similar discovery
was made by Schuler [4] during experiments with a vertically oscillating sphere, a plate and
with a wedge. The cross waves in a rectangular channel have been investigated experimentally
by Barnard and Pritchard [5] and more recently by Underktllal. [6]. The quantitative
experimental study of the cross waves due to vertically oscillating, half-submerged spheres
has been carried out by Tatsuabal. [7]. Taneda [8] observed during similar experiments
the transition from the outwardly propagating concentric waves to the radially decaying cross
waves.

Recently, stable cross waves have been observed by the authors during experiments with
various models of offshore gravity platforms subjected to earthquake-like horizontal excitation
in a water tank. This observation stimulated a whole series of large-scale experiments with
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different structure models (circular and rectangular cylinders, monotower-type and smooth
axisymmetric structures, multiple vertical cylinders) mounted on the shaker plate in the bot-
tom of the water tank and driven harmonically in the horizontal direction. The results of the
measurements will soon be published separately; here we mention only that, as soon as the ex-
citation amplitude reached some limiting value, stable progressive cross waves were induced
for any excitation frequency and, what is more important, for any type of the structure used.
To the authors’ knowledge, this is the first time that three-dimensional cross waves due to the
horizontal oscillation of free-surface piercing structures have been observed.

The spectral analysis of the measured pressure signals revealed the harmonic components
of %a) w, %w and 2v, o being the excitation frequency. It is a fundamental feature of the phe-
nomenon confirmed in all earlier experimental works that, whereas the directly forced wave
(either plane or three-dimensional) has the same frequency as the wavemaker, the cross wave
has half that frequency. The problem can then be interpreted in the context of the parametric
resonance, in which energy is transferred from the forced wave to the cross wave through
nonlinear interactions. Thus, the parasitical, in the context of the laboratory wavemakers, cross
waves should now be viewed as the parametrically excited instability of a three-dimensional
radiation problem.

The generation of cross waves has not only been studied experimentally, but also theoret-
ically. The first theoretical analysis was given by Garrett [9] who studied the standing cross
waves in a short tank for a symmetrical (with respect to the vertical mid-plane of the chan-
nel) wavemaker. He linearized the boundary condition at the wavemaker and the boundary
conditions at the free surface and obtained, after spatial averaging, Mathieu’s equation for the
amplitude of the cross wave. Later, Mahony [10] and Jones [11] studied the same problem,
but on the assumption of progressive waves in a long channel. Mahony, similarly to Garrett,
linearized the boundary conditions at the wavemaker, whereas Jones carried out the nonlinear
analysis, using a perturbation method up to the third order of accuracy. Jones obtained the
evolution equations for the components of the complex, slowly varying in time and space
amplitude of the cross wave with the use of the resonance equations for third-order wave
components. These equations could then be combined to obtain a cubic Schrédinger equation
in a semi-infinite domain.

A completely different approach based on Whitham’s average-Lagrangian method was
proposed for the analysis of cross waves by Miles, and Becker and Miles in a series of
papers [12, 13, 14, 15]. Using the variational formulation, they were able to avoid many of
the complications of a perturbation method and could not only analyse the cross waves in a
rectangular channel, but also the radial cross waves due to an axisymmetric wavemaker. The
latter problem was thought to be an asymptotic approximation to Faraday’s experiment with a
vertically oscillating sphere.

Their last paper [15] is of particular importance for the problem considered in the present
work. They derive an evolution equation for a progressive radial cross wave excited by a
cylindrical wavemaker with the prescribed, radial displacement

r=r1+ x(z 1), x = a f(kz) sin 2ot. 1)

Assuming that the amplitude of the cross wave varies slowly in time and in space, they obtain
an evolution equation that differs from the cubic Schroédinger equation only in the presence of
a factor YR in the nonlinear term, wherg is a slow radial variable. Then, they incorporate
weak, linear damping and obtain the transition conditions at which the forced concentric wave
loses stability to a parametrically forced cross wave.
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At first glance the problem considered in the present work looks very similar to that con-
sidered by Becker and Miles in [15]. However, there are some crucial differences which lead
to qualitatively new results.

Firstly, Becker and Miles consider a purely axisymmetric problem (with respect to the
directly forced wave), whereas only the wavemaker (circular cylinder) is axisymmetric in the
present work. In consequence, a much more complicated form of the cross wave, with two
slowly-varying amplitudes, is required.

Secondly, they carry out the analysis on the implicit assumption that the radial displace-
ment of the wavemaker vanisheszas> —oo. This enables them to solve the problem, using
a deep-water approximation. Unfortunately, this is not the case in the present work, since the
excitation does not depend on theoordinate. Therefore, strictly speaking, the deep-water
approximation can only be used for the cross-wave solution which satisfies a homogeneous
boundary condition on the wavemaker.

Finally, in the work of Becker and Miles, the energy transfer to the cross-wave is described
by a functional which is linear in the forced wave and quadratic in the cross wave. Thus,
they need to retain terms of, at the most, second-order in their functional. Subsequently, only
the first-order waves are necessary for the derivation of the evolution equation. In contrast to
that, the exitation depends on the azimuthal coordiftatethe problem considered here and
energy is transfered through higher-order (quartic) interactions. The functional is quadratic
both in the forced wave and in the cross wave and comprises terms up to fourth order. Hence,
the solution to second-order problems is also necessary for the derivation of the evolution
equations.

In the following sections, a variational formulation of the problem is given. Then, the
trial solution and the governing equations for its components are developed. The required
solution to the first- and second-order problems follows in the next section. Further, the aver-
aged Lagrangian is calculated, and finally, the evolution equations, together with appropriate
boundary conditions for complex slowly-varying amplitudes of the cross wave, are derived
from Hamilton’s principle. Since the theoretical results will be compared in the future with
results of large-scale experiments, the effects of surface tension are neglected in the present
work.

2. Mathematical formulation

Consider a surface-piercing, circular cylinder founded on the bottom in water of constant
depthi. The origin of a fixed coordinate system is located at the undisturbed free surface and
the verticalz-axis is positive upward (see Figure 1).

The forced oscillations of the cylinder axis are described by the following displacement
function

u(t) =upSin2wt for t>0 ()

in the direction of ther-coordinate. Assuming thay < 1, we can describe the instantaneous
cylinder surface (see Figure 2) in cylindrical coordinaie®, z) as

r=f(t) =u()cosd + \/rf —u?(t)Sit Y = r + £, 1). 3)
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Figure 1. Definition sketch.

Under the assumptions that the flow is irrotational and the fluid incompressible, there exists a
velocity potentiakp describing the waves radiated by the cylinder. The governing equations in
cylindrical coordinates fog and the wave elevation are

VZp=0 (n+&<r<oo, 0¥ <27, —h<z<1), (4)
b.=n:+Ve-Vn (z=n), (5)
¢ +3(Ve)2+egn=0 (z=n), (6)
¢,=56:+Vo-Vf (r=f=rn+§) (7
¢.=0 (z=-h), (8)

together with an appropriate radiation condition and the requiremens thiadin be periodic
in . Partial derivatives are denoted by, .

Figure 2. Description of the instantaneous cylinder surface.

This boundary value problem follows from Hamilton’s principle in the form

I2A
5 / Ldi=o. ©)
n
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where the Lagrangiah has been derived by Luke [16]

L=- / (9. + 3(V$)* + gz] dV, (10)
\4

and the volume integral is over the domain bounded by the cylicdet r; + £), the free
surface(z = n) and the botton{z = —h).

An equivalent form of the Lagrangian, which is more convenient for the analysis of cross
waves, has been derived by Becker and Miles [14]. Following their derivation, we obtain

27 20 00 o0
2L = / o U f ¢V2pr dr dz +f [p(2n, — b+ VoVn) — gnl.—,r dr
0 —h Jrg o

+ /h (@@, = VOV =28 D))=y [ (D, 1) dz} ; (11)

wherery(, 1) andzq (¥, ¢) are the coordinates of the intersection of the instantaneous cylinder
surface with the free surface.

The boundary value problem (4-8) admits a directly forced wave solution with frequency
2w which is stable for sufficiently smallg, but asug is increased it may lose stability to a
radial cross wave. The cross wave is described by the same boundary-value problem with a
homogeneous boundary condition on the wetted cylinder surface.

3. Trial solution and governing equations
In the analysis which follows the variables are made dimensionless by the relations
(F, 71, 5, ) =k, r, 2, h), 0=t (12)

with subsequent omitting of tildas, and a small parametef kuy < 1 is defined withk

being the wavenumber of the cross wave. The problem will be solved under the assumption
that the nonlinearity can transfer energy from the forced wave to the cross wave if the exitation
frequency 2 is approximately twice one of the natural frequencigsof the cross wave
according to

w? — a),f = 0(c*w?). (13)

The relation (13) determines the bandwidth of the hypothetical resonance which is narrower
than that considered in previous works [11, 13, 15]. This is due to the fact that energy transfer
to cross waves occurs through higher-order interactions. The bandwith (13) anticipates the
scaling of slow variables and the form of the averaged Lagrangian.

The crucial point of the analysis is the choice of a trial solution for the total poteftial
Taking into consideration the results of our experimental measurements, we pose the trial
functions in dimensionless form:

k2
—¢ =e(do+ ) + e%(¢oo + Po1 + P11) + £3(Pooo + Poor + Po11 + P110) + -+, (14)

kn = e(no + n1) + &2(noo + no1 + n11) + £ (Mooo + Noor + No11 + N11) + - - - (15)
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where:(¢g, no) represents the linearized forced wawg,, n1) describes the linear approxi-
mation to the cross wave,;,, 1, represent the interactions among first-order wave compo-
nents, an@,,, n;,, are third-order wave components. The presence of the third-order terms
in the expansions (14), (15) is due to the necessity of including of all fourth-order terms in the
functional (11).

For the purpose of further analysis it is also necessary to expand the function (3) describing
the instantaneous position of the wavemaker in a Taylor series about its rest position

kg = e&o + e%00+ O (). (16)
The expansion components are
£o = Refi € %%} cosv, 0o = (Re{e™¥%} — 1)(1 — cos D) /[8r1]. (17)

Inserting (14), (15) and (16) into the Equations (4)—(8), we obtain the governing equations for
the components af andx.
The first-order boundary-value problems are described by

V29, =0, (influid), (18)
¢j—10=0 $o+T ;=0 (z=0), (19)
¢jr = 0jé00, (r=r1), (20)
¢.=0 (z=—h). (21)

The second-order approximation is given by

V2, =0, (influid), (22)

S
d)jp,z —Njp.o = (1 - %) (V¢jvnp + V¢pvnj - nj¢p,zz - npd)j,zz)’

S
$ipo+ T njp = <f - 1) (NjPp.oz +Npdjo. +Vo;Vh,), (z=0), (23)
Pipr =&jpo + VEiVOy —&ibprr,  (r=r1), (24)
¢jp,z =0 (z=-h). (25)

The third-order boundary-value problems are described by
V20ips =0, (in fluid), (26)
S
Pipg.: = Nipg.s = <1 - %) (VoipVing + Vo, Vnj, +Vép, Vi,

+V¢jvnpq - njpd)q,zz - 77q¢jp,zz - npqd)j,zz - njd)pq,zz)
— 31500 —prarce + (L= 581)(0; Ve, Vi,
+npv¢q,zvnj + qu¢j,zvﬁp), (z=0), (27)
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S
Pipqg.0 + T_lnqu = (% - 1) (VojpVoy + Vdp Vo,

+77jp¢q,9z + 77q¢jp,9z + 77pq¢j,92 + nj¢pq,9z)

—302@(—praroz: T (381 — D1V, -V,

+npv¢q,zv¢j + nqv¢j,zv¢p), (z=0), (28)

Djpg.r = —Ejp@qrr +VE Vg = Eibpgrr +§;VE VY,
_%Sjépd)q,rrr’ (I" =r1), (29)
d)qu,z =0 (z=-h). (30)

In the Equations (18)—(30) we haye p, ¢ = 0, 1, §;, is the Kronecker delta anfl denotes
tanhkh. Moreover,&; = & = &3 = 0. The Equations (18)—(30) have been derived on the
assumption (13) from which the following approximation follows

w?  kgtanhkh

== 1-0(EH~ 1 (31)

4. First-order problems

It has already been mentioned that the explicit solutions to all first-order problems considered
here are required in the subsequent analysis.

The linear approximation to the forced wavg & 0) can be found through a Hankel
integral transform with respect to the radial coordinate. Proceeding similarly to Becker and
Miles [15], we anticipate a solution of the form

[$o, 0] = Re {[@o(r, 2), i Zo(r)] € %7} cost (32)

and define the following Hankel-transform pair

Doz, w) = / Do(r, z) Fy(ur, wri)r dr, (33)

r

Do(r, 2) :/o do(z, W) Fu(pr, pry)pm du (34)

for the complex amplitudéq(r, z) and similarly forZq(r). The functionFy (ur, ury) satisfies
the homogeneous boundary condition (20) on the wavemaker (cylinder) surface and
can be expressed in terms of Bessel and Hankel functions of the first order as follows

Ji(ur) Yy (ury) — Ya(ur)Jy(uury)
[Y,2(ur) + Ji2(ur)]42

Fi(ur, pr1) =

_ HP@nHY (ury) — B HP (ury) -
2i(HyY (ury) Hy? (ury) 1¥2
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where primes signify differentation with respect to the argument.

Inserting (32) into (18)—(21), carrying out the transformation according to (33), solving
the resulting differential equation with the proper boundary conditions for the transforms, and
carrying out the inverse transform (34), we obtain the first-order solution for the forced wave
in finite depthh

o — 27 " D (ur) _ HPur) | (1 4coshyu(z + h) )d_u
zo = 2 HY(ur)  H (ur) ( T ) du o
i Jo _Hl(l)/(//«rl) Hl(z)/(url)_ ulT —4) n’

whereT = tanhuh and the path of integration is deformed under the real pglg. 7T —4 =
0) in order to satisfy the radiation conditionsat= co. This solution comprises both radiated
waves (contribution fromH, " (1r)) and evanescent modes (contribution fréffi”’ (;u) and
H{? (ur)).

Evaluating the integrals in (36), we obtain a well-known solution

4H® (uor) sinh 2uoh coshuo(z + h)

¢ = ’ .
° oH® (uory) (2uoh + sinh 2ugh)  coshuoh

o0

Z AK 1 (k1) sin 2¢,h COoSky(z + h)
K@Ki(Kﬂ‘l) (2kc0h + sin 2¢oh) COSk h

(37)
=1

whereik, are the imaginary poles of the integrand in (36).
When water depth increasés — oo, T — 1), the radiated component of the solution
(37) reduces to

o HY@Er)

= L 38
° " HY (4ry) (38)

and the local components (evanescent modes) are given by

o .
. 8K 1(kyr) Sinkh
oY = lim : cos h
0 h— 00 Z K@Ki(l(ﬂ‘l) (2kc0h + SIN 2¢4h) oz +h)

8r2 o sin[(2 — 1rr/2] (IR
> o Dn cos( T h)) , (39)
which converges to zero on the free surface and2e?/r on the bottom.

Hence, evaluating the integrals over the free surface, we need only the radiated component
(38) of the solution ford, that is O (r~1/2). The calculation of integrals over the cylinder
surface seems to require both radiated and evanes@énty)) components, even for a deep-
water approximation which is relevant for the problem considered. However, further analysis
will reveal that a part of the cylinder-surface integral can be transformed into a free-surface
integral and the remaining part gives a null contribution. Therefore, the evanescent modes (39)
do not contribute to the functional (11) and can be neglected in subsequent analysis.
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Figure 3. Comparison of: (stepped line) angy (dotted line) for a circular cylinder.

The linear approximation to the cross waye= 1) has to satisfy Equations (18) and (19),
together with the homogeneous boundary condition (20) on the cylinder. We use a deep-water
approximation and require, instead of (21), thawanishes iz — —oo.

Since the problem considered here is not axisymmetric, we choose the solution for the
cross wave in the general form

[p1, m] = V2F,(r,r1) [Re{[—i €, LA(R, 7) &} cosn
+ Re{[—i €, 1A(R, 1) e ¥} sinnd], (40)

whereA.(R, t) andA,(R, t) are dimensionless, slowly varying complex amplitudess
an azimuthal wavenumber amtl = 2¢%r andt = ¢%0 are slow variables (see [15], where
R = 2¢r andt = £20). The amplitudesA (R, 7) andA,(R, T) are to be calculated from the
evolution equations.

The comprehensive discussion of the properties of radial cross waves is given in the paper
cited above; here we remark only that, since the energy is transferred from the wavemaker to
the cross wave through weak nonlinear interactions, the cross wave must be a standing wave
in the first (linear) approximation. Thereforg, (r, r1) must have the form (35), whefe= 1
and where Bessel and Hankel functions of order 1 have to be replaced by the same functions of
ordern. Moreover, the cross wave excitation is most efficient at that wavenumioewwhich
the turning point of Bessel's equation is at the cylinder. Thus, we may expeetof order
0O(r1) (rp — dimensionless cylinder radius). This assumption has already been confirmed in
experiments of our own with different cylindrical wavemakers. For instance, the comparison
of the observed values af with r; for a circular cylinder (radius — 9 cm) is given in Figure
3. It should also be noted that, in view of the parameter range considgred(4, 12)), the
Hankel functions in (38) and (40) can be replaced by their asymptotic approximations, even
near the cylinder surface.

5. Second-order problems

The solution to all second-order problems described by the Equations (22)—(25) can also be
found through Hankel transforms. The calculations are straightforward in principle (though
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tedious) and follow the same line for all involved second-order interactigpsOur analy-

sis will show, however, that onlypo1, no1) and (¢11, n11) are explicitly required for the the
derivation of the evolution equations. These two components admit the use of the deep-water
approximation and we shall take advantage of this to simplify the results. Below we present
the solution procedure and some results in a compact form.

Inserting the solutions of the first-order problems into the Equations (22)—(25), we ob-
tain on their right-hand sides a combination of terms with various harmonic components
in the time domain (index:) and in space (index). There appear terms proportional to
A., A, A%, A2 and toA_A,. There are also terms which do not depend on the amplitudes.
Eventually, we obtain the following boundary-value problem for each harmonic component
m (m =0, 1, 2, 3,4) of the potential functiorp;,

V2 = 5(r —r1) Y Re (AP Q™ (1. B, 2) €™} (in fluid),
les

¢jn;7,z - 77?;’9 = Zmz {A;’”GWIO,’ 'l}) efimﬂ} ,
les

] - (z=0), (41)
¢, = Re{ATH™ (r,0) e},
led
¢, =0 (r=r), ¢h.—>0 (z——00) (42)

wheres(r — rq) is the Kronecker delta, and the following sétsind 4;" have been defined
for the second-order problems considered:

8 = s, ¢}, AL = A, A=A, forthe case(01),
8 = s, c,sch,  AJ=IAL AY=IALL AL =AAIHAAL
A2 = A?, A2 = A?, A2 =2AA,. for the case(11). (43)
Omitting here the details of the functio®™, G™ and H™, we pose the solution for each
problem(jp) in the form
(97, 0] = (22 " Re {A]'[i 0" (r, 9, 2), 2" (r, )] €7 ) (44)
led

and define the following Hankel-transform pair

ok 2 poo [ pmi
o = / / i Fl(ur, pry)r dr do, (45)
m 0 r )
— (I)m[ - 9_ 800‘ 0o &)ml 1
Zml = Z 27 /0 Zml }Va (,LU', HJ"]_),LL dlu’ (46)

where the following identities hold for the different second-order waves:
— the cas€01)
F) = Fy(ur, pry) sinav, F. = Fy(ur, pry) cosad
for a=m—-121,n+1),
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— the cas€11)
= Fy(ur, ury) CO82nem — @), Fy = Fy(ur, ury) cosad,
FJC = Fy(ur, ury) sinay for o« =0, 2n,

and F,, (ur, ury) is given by Equation (35) modified for Bessel functions of order
Inserting (44) into (41) and carrying out the integral transformation, we obtain the boundary-
value problems for the transforms of each space-harmonic compenent

&l — p2dm = Q1 (ry, 2) Fy(ury, wroyry  (in fluid), 7)
B+ m 2 = G
N . . (z=0) (48)
m @+ 20 = )"
CiDZ“lr =0 (r=ry), &)Z’[Z -0 (z=— —00). (49)
The solution to this system of equations is
o ml ml
C,I\)le — 9’ m‘zf / fml(v) (e mlz—v| + Ik +m2 eu(z-i—v)) dl),
nw—m nw—m
Sml m K poml _ gml -
Zy = —— (—J(’j;’ -G +/ fa(v) e dv), (50)
n—me\m —o

where f"' (v) = QU (r1, v) Fy (ur1, pry)ry.
The solution for each second-order wavsg),, n,,) can be obtained with the use of the
inverse integral transform (46). For instance, for a second-order cross wave we obtain:

bu o2 i = des w dp
|:7711— ):| D‘ie{ ! Z/ |: 2_ 1 3:|K§11)(M)Fa(ur,ur1)u_4

(11 @=0.21 2 — p = gu
- [AZ cOtb(anar — a?) + AZcosad? + 2AA, Sinad | } : (51)

where XV (n) = f:l"’ F2(r, r1) Fy(ur, wry)r dr, and the temporal mean wave elevation is
(m1) = FIALPLFE)? — (VED + |ANPUF)? — (VFH?]
+HAAI FAADFF - VEVFE. (52)

The path of integration in (51) passes under the pole at 4 in order to satisfy the radi-
ation condition atr = oco. The asymptotic approximation fer — oo is dominated by the
contribution of this pole and its complex amplitude is given by

D14 ].21‘84Z 2 2z
{ } . [ } (_n) dutin 3 0,4y K (@
le —24 r a=0,2n

[A% cosSanar — ) + AZcosad + 2AA, sinad] + 0, 3)
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where
, 1/2

H@'(4 )
D, (4r) = —"‘1,( 1) gre/?,

HP (4ry)
The results forg, andno, are:
do1 = V2Re {(ArDY + ATP¥)ie " + (A, 0% + A d¥)ie 3], (54)
no1 = V2%Re [(AZY + A*Z¥) e + (A Z% + A Z%) e ¥, (55)

The complex amplitude$’, Z¢, 3 andZ% are given by

P i [ (50 — 2u?) e
w |~ Z 3 / 3, 2 KO (1)
Z 8o w4+ u? —5u—45

a=(n-1),(n+1)

€ d
w du
+ Mo () § Fof (ur, pry) ——, (56)
-1 nw—1
o3¢ ;oo 3(50 — 2u2) e
AR T (e KO0~
Z w1 (141 0 w>+9uc —45u — 45
Mo (1) ¢ Fyf (pr, pry) ——————o, (57)
[ _3(u—1) } } Y- -9
where
2r n
M(n$l) — m (Fn,rr + V_2Fn>\r:r1 F(n$1)<uvrl7 //Lrl)7

00 H(l) 4
JC(StO:D:/ (]i_)/( r) Fn(rvrl)Fa(//Lr, //Lrl)r dr.
rn Hp7 (4ry)

An asymptotic approximation to (56) and (57) satisfying the radiation conditien=ato is

ml . 2 1/2
* L e | (2m? o (m?r+37/4)

0 -1
> DLmPry [@m* — 50)mK Y (m?) — Mo (m?)] + v : (58)
a=(n—1),(n+1) 0(r—3?)

where

, 12 , 1/2

H®@'(. , _ H®@'(. .

D) = (tl),() e /2 ging Y, D) = ‘ZT() e 'm/2 cosa .
HY' () Hy™ ()
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6. Average Lagrangian

The solutions obtained for the first- and second-order waves depend both on the fast and on
the slow variables:

o = Po(r, ¥, 2), ¢1=¢1(r, %, z, R, T),
$oo = ¢oo(r, ¥, 2), ¢o1 = ¢o1(r, ¥, z, R, 1), ¢11 = d11(r, V0,2, R, 7).

Similar relations are valid for; andxn;,.

In order to calculate the averaged Lagrangian, we insert the trial solutions (14) and (15)
into the functional (11), including all terms up to the orde(s*). Proceeding similarly to
Becker and Miles [15], we expand the integrands in the free-surface and wavemaker integrals
aboutz = 0 and r = ry, respectively, separate out the contribution of the end point in the
free-surface integral by the approximation

/[N]dr%/ [~1dr —rol~1r=,

ro r

whererg ~ £(9, 0, t), apply the same approximation to the wavemaker integral, and carry out
the differentiation (where necessary) according to the rule
3 3 , 0 32 92

92 92
— — 42 , — > — + 462 et — |
or 7 ar TR o2 a2 T R T ke

0 ., 0 . a0
— — + & —.
a0 a0 ot
Further, we separate out the Lagrangiayof the forced wave which is indepenentAf and
A. and does not contribute to Hamilton’s principle. Finally, we averayg¢he Lagrangian

over the fast time to obtain the dimensionless average Lagrangian in the form
2k5
w?e*
The components of the averaged Lagrangian are:

L=

(L — Lo) = L£11 + Loo11+ L1111+ O(£?). (59)

2 0 00
L11 = 2/ / / (1(Prr + 2rd1,r + 26%rd1 gp)) dr dz di?
0 —h Jr
27 p0
+2/ / <¢1¢1,Rr>r:rl dz do
o Jon

2 00 1 kg X
+[ / ¢1n1,c + 24 119 — —n1 r dR d?, (60)
0 Ry & w =0

2 )
Loo11 = / f ( — m(doore + Mooy — Mo(Porre + Mo10) + 3711(Veo)?
0 r1

+101V V1 + 3100(V$1)? + p11:1000,6 + Por-(Non1) 6

+¢00.: 11016 + 3 (Bo.2212M0.6 + P1.22M3N16)) =0 1 Or AP
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2 0
- /0 /h((¢011§o,9 + ¢116000)71 + P115060.6) r=r, dz AP

2
r
- / <U1¢1§o§o,e + Eléo,en%ﬁo,z + 2r1EE 1.
0
+ r1&o [ (¢116 + m11) (do — M0) — M1(dbore + Mor) + bo.-MNLe

+¢1,z(7’0n1),0]>r:r1 o, (61)

z=0

27 o)
L1111 = / / ( = n1(P1116 + N11D — Ma(P116 + NM11) + G1:(N1N11) 6
0 rq

+P11:m010 + 3B1::03N10).—0 1 dr AV (62)

It should be noticed that in (61) and (62) the terms in parentheses are just the left-hand sides of
the boundary conditions (23) and (28) for a deep-water approximation. Moreover, the integral
of (¢o11£0,¢0) (the term of (61)) can be transformed with the use of Green’s theorem and the
boundary condition (29) according to

2t 0 2 poo
—/0 fh(¢011€o,9>r=,1r dz dv =/0 / (bodpor1: — por1bo.c)_o v dr d, (63)

The relation (63) can further be combined with the terim(¢o116 + 1011 Of the functional
(61) leading to

(Podpor1: — Por1¢0 ) + (—1m0(Po116 + M010)) = (Po(Por1: — Mo116))

where again the term in parentheses is identical with the left-hand side of the free-surface
boundary condition. Therefore, all third-order wave components in (61) and (62) can be
replaced by lower-order components, and the explicit solution to the third-order problems
is not needed for the derivation of the evolution equations.

The functional (60) can be reduced to the form obtained by Becker and Miles [15]. Using
the identities

G101, = G1,P1R, (n3) = —(mere).
d 0 0
G U901 = ——(dr1p) + 2% (i p),
and integrating by parts, we obtain
2 0 o) 2 o)
oCll = <—2/ / d)le" dR dZ dv +/ (d)lnl,r + ﬂ¢lnl,0)z=0r dR d0> ’ (64)
0 —h JR1 0 R1

whereR; = 2¢%r1, andB = (0 — w?)/(2:%w?). Clearly, g is of order O(1) due to the
resonance condition (13).
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Inserting the solution for the first-order cross wave into (64), and averaging over the fast
time#, we have

o)
°Cll = Re { {l(AjAc,r + AjAs,r) + ﬁ(ACAZk + AS‘A:‘()

R
— (AcRAL g + Ay AL YT EZ(r)r dR} , (65)

where the asterisk denotes a complex conjugate. Proceeding similarly to Becker and Miles
[15], we use the asymptotic approximation (r)r,

R J
nwF2(r)r ~ 14 cos| — — (n + 37 + 2tarr? ﬂ , (66)
g2 Y, (r1)
neglect the integrals with fast oscillating integrands, and approximate (65) by

00
°Cll = Re { {l(A:Ac,r + AjAs,r) + ﬁ(ACA: + AS‘Aj)

R1
— (AcrA% g + Ay RAY ) dR} : (67)

A similar procedure can be applied to the functionals (61) and (62). The oscillatory compo-
nents of the integrands fa&@ = O (1) are neglected and the approximatidn= A(Ry, 7) =
A1 for r = O(rq) is invoked. The result folgg11iS

00
o60011 = {ycAcAz( + VSASA;(}Ril dR + PcAchak_c + PsAleL' (68)

R1
The coefficients,, y, for the deep-water approximation are

175 175 81 81 (69)
Ve=——"7 -~ —/TI1, Vs = ——7 - = —/TI.
sr|HY (4rp2 4 8r|H{Y (4r)2 4

The expressions faP. and P, are given in Appendix A.
The result of the approximation procedure #1111 is

L1111=—38 | Ba+b)R AR+ 30141 + 3 02b1 — Q3AL AL ALAYL, (70)
R1
where
a=AA+AAN, b= (AA —AAH,
3
81’

The expressions fo@,, 0, and Q3 are given in Appendix B. The detailed analysis shows
(see Appendix B) thaD; is a quantity of higher order in comparison@ and Q, and can
be neglectedQ3 = 0).

ay = a(Ry), by = b(Ry), 1)
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Combining (65), (68) and (70), we arrive at the final form of the averaged Lagrangian

£ = /R {E(AfAc,r - ACAZ,I) + E(AjAs,‘[ - AsA:f’.[) + IB(ACAT + AS‘A:()

1

+(yCACA: + )/SASA:T)R_l - ('A‘C,R'A‘>I< R + AS,RA?:,R)

c,

- %aRil[g(AcAZ( + AS‘A?)Z + (ACA? - AvAj)z] } dR

+P.ALAY + PALAL + %(AchL + A A;)?
Q2 * % \2 2
+5 (ALAL — ALAL) + 0 (). (71)

7. Evolution equations

The evolution equations for the parametrically excited cross wave can be derived from Hamil-
ton’s principle (9). Inserting (71) into (9), requiring the resulting functional to be stationary
with respect to independent variations Af and A%, and invoking the null conditions at
infinity (A, =0, A; = 0for R — 00), we obtain a set of two complex evolution equations

Asrr + i+ (B+7RHA, — SR (2APA; + (3AZ + ADAY) =0, (72)

Acrr +iAcc + (B + v.R™HA. — SRTH(2APA. + (BAZ + ADAY) =0, (73)
together with the boundary conditionsRt= R,

As g+ PA+ 01 (IA2 + A1) Ay + 02(AAT — AADA. =0, (74)

Ack + PAc+ 01 (IAP + A7) A — 02(AAT — AADA, = 0. (75)

These equations have been derived on the assumption of a perfect fluid. Viscous dissipation
may be incorporated through the transformation (see [12])

A= A +aA a=¢/et

where¢ is the damping ratio (on the scag for the cross wave.
With this transformation, the evolution equations change into

s 8
A+ iRoc + (B+ia+ L) A = = (2APA + (BA? + ADAY) =0, (76)

’ 5
Acrr +iPer + (/3 Yo+ %) Ac— = (2AJPA. + (BAZ + ADAY) = 0. 77

without any change in the boundary conditions.
It is apparent that both the equations and the boundary conditions are coupled only through
nonlinear terms. It is also obvious that they are satisfied oy A. = 0 which corresponds
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to a wave directly forced by the wavemaker. In order to determine the stability of this wave it
is necessary to analyse the linearized boundary-value problem

Asrr i+ (B+ia+yRHA, =0, (78)

Acrr +iAcc + (B +ia +y.RTHA, =0 (79)
with the boundary conditions

Asr+ PA; =0, (R =Ry, A, >0, (R— o), (80)

Acr+PA. =0, (R=Ry), A.—> 0, (R — o0). (81)

This boundary-value problem has some important features from which the qualitative be-
haviour of its possible solutions may be deduced. Firstly, the linear equations are uncoupled
and can be analyzed separately. Secondly, in contrast to previous results (see [15]), there are
two parameterss and P (both are real numbers) describing the energy transfer from the
wavemaker and the forced wave to the cross wave. The paragmetays an important role,

since a simple analysis reveals that the trivial solufign= A, = 0 is unconditionally stable
wheny = 0. One should also notice that the flutter-type instability (not only divergence as in
[15]) of the trivial solution is generally expected.

Finally, we may anticipate that, for a prescribed excitation frequency, the form of the
cross wave emerging after the stability margin has been reached may be either symmetric
or antisymmetric (with respect to the vertical plane of excitation), depending on the values of
the parameters,, y,, P. and P;. The results presented in Appendix A suggest, that due to
the relationshipP, > P., more energy is transferred to an antisymmetric cross wave than to a
symmetric one.

It seems that the analysis of the evolution equations is possible by an approximate analyti-
cal WKB method (see.g.[17] p. 558). Such an analysis is currently under development and
the results will be presented in a forthcoming paper.

8. Concluding remarks

In contrast to previous research results, the evolution of the cross wave excited by the hor-
izontally oscillating vertical cylinder in water of constant depth is found to be described by
two complex, nonlinear partial differential equations with coefficients which depend on a
slow radial variable, both in the linear and in the nonlinear terms. These equations differ
from the cubic Schrodinger equation which governs progressive cross waves in a rectangular
channel (see [13]) and differ from the evolution equations derived in [15] for an axisymmetric
wavemaker. The dependence of the linear part on the slow radial variable is a very important
feature playing a crucial role in the stability analysis of the forced wave. If the coefficients
of the linearized evolution equations were independent of the radial variable, the forced wave
would be stable (under the presence of viscous dissipation) and the excitation of the cross
wave would be impossible (at least for small perturbations).

It has been shown that, due to the specific geometry of the excitation, energy transfer
from the wavemaker to the cross wave occurs through higher-order (quartic) interactions. It
determines the scaling of the slow variables, which is different in comparison to previous
studies. The evolution process is slower and the radial variable is stretched out.
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The functional desribing the energy transfer is quadratic both in the forced wave and in
the cross wave and comprises the integrals over the free surface, the wavemaker and over
the wavemaker-water line. Therefore, the solution to the second-order problems is necessary
for the derivation of the evolution equations. The required solutions for second-order wave
components have been determined in the present work through integral transforms.

The derivation of the evolution equations is based on the assumptions that the amplitudes of
the forced wave and the cross wave are of the same order. Moreover, two harmonic azimuthal
wave components have been included in the trial solution for a linear approximation to a cross
wave. These assumptions are in accordance with the results of our experimental studies on
various models of offshore structures.

Appendix
A. Calculation of Ps and P,

The detailed analysis shows th@&t and P. result from the contributions of the integral over
the undisturbed free surfac®{) and of the line integral over the intersection of the cylinder
with the free surfacek’)

P, =P+ P!, P.=PF+ Pl (82)

The contribution of the integral over the cylinder surface is equal to zero.
The component® and P/ are equal and given by

14 Y e . mel any .
PP = PF=Tmeli [ > [<I>0Fn ([8(—1) ; +5+r—2] z"

"1 m=13 e=(-1),
(n+1)

an
+ SO+ 20m = DO + L) + D5, Fu(@f, + 40 )

o,22
+ PoFur (P, + Zo,) + o, B Zg' + 0<r5/2>} rdrt. (83)
|z=0

We may calculate the functionB?’ and Z from (56) and (57) by taking the contribution of
the poley = m? and the neighbourhood of = 0, and applying an asymptotic approximation
to the Hankel functions for largeandr,

m md 2 o\ 172
| 1 hEe 2mm glm?(r—rp)]
zm 8 —m r

[@m* - 50)mK L (m?) — My (m?)] (84)
n 50
[(—1)"% 2r\"?1 . :
+l(16’31r 5 (%) I:ez[S(rfrl)fnjj _ ez[3(r7r1)+njji| + O(r73/2)‘

m
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The component®! and P/ are given by

2 3 2
P! = T F2(r))ry | 6%e(do) (”—2 - 5) — Jm{do) (iz - 1)} :
: 16 ry ri 1220, r=ry

2 2
P! = f—GFf(rl)rl [zme{cbo} (%—5) — Jm{do) (”—2— )l o (85)

1 ry

The use of an asymptotic approximationdg for large r andr; leads eventually to very
simple expressions

T 3n? T n?
Pl = —F? = _—1), Pl =—_F? — -3 86
T (rors ( 2 ) T (rors <r12 (86)

from which follows thatP! > P! for anyn andry. This relationship implies immediately
P, > P. and we may deduce that it is generally easier to excite an antisymmetric (with
respect to the vertical plane of excitation) cross wave than a symmetric one.

The integrand inX Y (m?) comprises a triple product of Hankel function® (¢~/2))
that is highly oscillatory (inv). Its improper integral can be calculated, either via Fresnel
integrals after an asymptotic approximation to the integrand has been applied, or directly in
the semi-analytical way proposed by Kim and Yue [18] or by Chau and Eatock Taylor [19].

B. Evaluation of Q;, Q, and Qg

0, = %Dﬁte {/ {f’f(l‘)(‘l-lo’Z + 21y, . + 2No + Ny,) — Fn%r(r)(ZNo + Ny,)
r1

2
n
_2Fn<r)Fn,r(r)(210,r + IZn,r) - r_anz(r)(412n + 2]\70 - NZn)

2 2
+ S FA0F2 () — 2F2, () — 35 F2() dr} ,
d ' r
T o
Q2 = gm? {/ {F‘nz(r)(410,z - 212;1,z + 2N0 - N2n) — F;ﬁr<r)(2NO _ NZn)
r
02
—2E ) Fp (N Rloy = Tonr) + r_anz(r)(412n — 2No — N2,)

l’l2 l’l2
— = FX(r) [1053@) —2F? (r) + —2Fn2(r)] } r dr} ,
r ’ r

o0 I’l2
Qs =7 / — F(ryr dr,
r1 r

wd
M_

I, = lim / e (u? — HKM (W) Fy ()
0

z—0~

o 87)
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) Zd

e = Jim [ €047 = DRI G0 ur) 2L (88)
=0~ Jo w—4
o d

Ly = Jim [ e~ ORI F () 22 (89)
=0~ Jo n—4
e d

N, = lim / & (2u — p? — L3 KD () Fy (ur) L2 (90)
z—0" Jo M_4

fora =0, 2n.

The integrals (87)—(90) result from the second-order cross wave and can be replaced by
their asymptotic approximation for largeandr;. This approximation is dominated by the
contribution of the poley = 4) and is given by

2

1/2
I, ~ 24i( ) e gDy + o,

r

2r

1/2
Iy, ~ 96i( ) "I KIV G + 0,

r

= 2r\Y?
Iot,r ~ 96i (—) e4l(’_rl)J<(§ll)<4)+ 0(,.—3/2)’

r

~ 27\? .
N, ~ —A48i <—) e4’(’—’1)c]co(l11)(4) 4 0(7‘_3/2),
r

Consequently, the coefficient;, 0, and Q3 can be simplified to single integrals
01 = %me { / UR20) @l + 2D . + 20+ Nop) — 26, (1) oy () @y + Do)
rn
— ﬁn%r(r)(Zﬁo + Noy) 4+ O~ 5?))r dr} , (91)
0, = %me { / VB2 A — 2. + 2o — o) — 2F,(r) B ()20, — Ton )
rn

— F2,(r)(2No — N2,) + 0(r>/?)}r dr} : (92)

03 = rt/oo{O(r5)}dr ~ 0. (93)

Here, F, andF,, . denote asymptotic approximationsfip andF,, ,., respectively.

The integrals in (91)—(93) as well as &Y have highly oscillatory (i) integrands that
areO(r~%?). They can again be calculated with sufficient accuracy in the semi-analytical way
presented in the papers mentioned in Appendix A.
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